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The problem investigated is the stability of a flame anchored by recirculation within 
a channel with a cavity, acting as a two-dimensional approximation to a gas turbine 
combustion chamber. This is related to experiments of Vaneveld, Hom & Oppenheim 
(1982). The hypothesis studied is that hydrodynamic oscillations within the cavity 
can lead to flashback. 

The method used is a semi-analytical-numerical technique where the conservation 
equations for enthalpy and fuel fraction are represented by the low-Mach-number 
combustion model of Ghoniem, Chorin & Oppenheim (1982). Burnt and unburnt gas 
are treated as incompressible fluids where the reaction zone acts as a source for 
volume expansion. The flame is modelled by a Lagrangian technique using a simple 
line interface calculation algorithm. 

The turbulent flow field is determined using conformal mapping theory and the 
hybrid random vortex method. The vorticity generation takes place at  the walls to 
achieve no slip, and is influenced by boundary-layer separation. To avoid locating 
the separation points a priori the numerical viscous sublayer is extended 
continuously past the corners, and their singularities are in effect cut off by using 
locally a corner rounding technique within the conformal mapping. 

The computed unsteady boundary-layer separation and reattachment of the non- 
reacting flow field agrees with unsteady boundary-layer theory. On the basis of the 
numerical simulations of the flame stability problem it is concluded that 
hydrodynamic oscillations within the cavity, combined with unsteady boundary- 
layer separation and reattachment can cause a flashback. 

1. Introduction 
One of the possibilities for reduction of oxides of nitrogen and particulate emission 

from gas turbine engines is the use of lean premixed prevaporized combustion, see 
Ganji & Sawyer (1980). The lower emission levels of oxides of nitrogen are caused by 
the lower peak combustion temperature compared to that of a conventional 
combustor which works on the basis of diffusion flames. The reduction of particulates, 
carbon monoxide and hydrocarbons is a consequence of more uniform combustion 
and an excess of air. The introduction of lean premixed prevaporized combustion to 
gas turbine combustors is however troubled by flame stability problems, such as 
blowout and flashback. In this work we focus on the latter. A general review of 
reasons for flashback is given in Plee & Mellor (1978). 

Keller et al. (1981) studied experimentally the stability of a flame anchored behind 
a backward-facing step in lean premixed propane and air. They found three modes 
of unstable flame motion. One of these, which was metastable and made a 
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characteristic humming sound, appeared as a response to acoustic excitation. A 
second mode, associated with a travelling wave pattern of interacting vortices, 
developed into the third mode associated with growth and convection of recirculation 
vortices, which in turn developed into flashback depending on the flow conditions. 
The dominating frequency periods of these modes of flame motion were lower than 
that of the humming, thus verifying their hydrodynamic nature. The experiments of 
Vaneveld, Horn & Oppenheim (1982), which also confirm these findings for a channel 
with a cavity geometry, show that hydrodynamic oscillations are the possible cause 
of many of the flashbacks reported within combustors. The motivation for this work 
is that increased knowledge about the hydrodynamic aspects of the combustion 
instabilities may help us in controlling them. Hence acoustic excitation of the flow 
field is excluded in this study. Based on experimental observations our flame 
stability problem is classified as taking place in the regime of reaction sheets where 
the chemical times are much shorter than the transport times, causing the 
combustion to occur in thin sheets wrinkled by the turbulence. However, these sheets 
may be multiply connected depending on the turbulence intensity range, see Bray 
(1980). The reaction rate for converting unburnt fluid into burnt fluid is assumed to 
be proportional to the flame area, and the local burning speed relative to the flow 
field. By this simplification, the local burning speed becomes a function of fuel type, 
concentration of reactant and oxidizer, initial temperature, pressure, turbulence 
intensity, flame stretch and Lewis number. 

However, since the combustion is premixed, the dependence of the local burning 
speed on fuel type and concentration of reactant and oxidizer is given once the 
mixture is chosen. Also the venting area is so large that the pressure varies little 
once the initial state variables are chosen. Theoretically the Landau instability, 
which is a local hydrodynamic instability based on the energy release across a thin 
flame, should increase flame wrinkles once they have been established. However, in 
lean premixed propane and air, where the effective Lewis number is greater than one, 
the local burning speed decreases for positive and increases for negative flame stretch 
respectively, and acts against unstable growth of flame wrinkles, see Law (1988). As 
a further simplification we therefore assume the local burning speed to be 
independent of flame stretch and reduced to that of a one-dimensional flame. 
Consequently the main effect of turbulence on the combustion rate is assumed to be 
enhancement of the flame area through wrinkling and folding. This may be a rough 
approximation in reality since it requires high space and time resolution to resolve 
numerically the geometry of the flame front and its motion. 

In an unbounded region in a non-rotating reference frame, the only vorticity 
generation is caused by the baroclinic effect where unsteady pressure waves interact 
with the flame. See Ashurst & McMurty (1989) for work on modelling combustion- 
generated vorticity in an unbounded flow field. However, when the flow field is 
bounded, the major source of vorticity is the shear force from the geometry acting 
on the fluid. The vorticity shearing, which increases the width of a mixing layer 
downstream of a boundary-layer separation, enhances the flame area drastically and 
thereby increases the overall combustion rate, provided the turbulence intensity is 
not too high or the mixture too lean which results in blowout of the flame as 
demonstrated by Ganji & Sawyer (1980). By prescribing the local burning velocity 
we have in principle neglected the possibility of flame extinction by turbulent 
straining of the flame. However, since we intend to  study flashback and not blowout, 
this limitation should not affect the analysis significantly. 

The flow field is assumed to be two-dimensional. This excludes vortex stretching 
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in the governing equations. However, the leading and the trailing edge of the cavity 
dominate the creation and destruction of vortices while the vortex stretching carried 
out by the smooth sidewalls, see the experiments of Vaneveld et al. (1982), takes place 
normal to the flow direction and is expected to be negligible. 

There are several methods for solving the governing equations numerically, such 
as finite-difference, finite-element and vortex methods. The choice made here is 
motivated by the need to resolve numerically the unsteady boundary-layer 
separation and reattachment which characterizes cavity flow. A direct solution 
procedure by Ghoniem, Chorin & Oppenheim (1982) is used to solve an approximation 
to the governing equations for turbulent combustion in the low-Mach-number range 
neglecting acoustic waves. The flame front is represented as a constant-pressure 
deflagration wave superimposed on the turbulent flow field. The energy release is 
based on the assumption of conservation of enthalpy in a reference frame following 
the flame which is modelled by a Lagrangian technique using a simple line interface 
calculation algorithm. Huygen’s principle is used to avoid computing the normal 
unit vector to the flame. This makes it possible to represent a multi-connected flame 
surface. 

The exothermic process contributes to the velocity field via volume sources. The 
turbulent flow field is computed by the hybrid random vortex method which takes 
near-wall regions into account. In this model the turbulent velocity fluctuations are 
induced by small and large groups of vortices affecting each point in space for a short 
or long time respectively as they pass by. To maintain no slip, vorticity is generated 
at the walls as vortex sheets which only induce velocity locally within a numerical 
viscous sublayer. Vortex sheets which leave this layer are redefined as vortex blobs 
which affect the velocity field globally, and back to vortex sheets if they re-enter the 
viscous sublayer. In their original work Ghoniem et al. (1982) used this model to 
simulate a flame stabilized behind a rearward-facing step. The flame motion was 
unsteady; however, the flame remained attached to the step edge. 

The main problem investigated in this work is the stability of a flame anchored by 
the recirculation within a cavity. The hypothesis studied is that hydrodynamic 
oscillations of unsteady character can lead to flashback. To resolve the interaction 
of hydrodynamic oscillations within the cavity with unsteady boundary-layer 
separation and reattachment, the accuracy of the numerical scheme is improved. 
This is done by moving the vortices in the physical space by Simpsons fourth-order 
rule in time instead of using the original forward Euler scheme. To avoid locating 
the boundary-layer separation points a priori, the numerical viscous sublayer is 
extended continuously past the corners of the cavity and in effect the corner 
singularities are cut off by using locally a corner rounding technique within the 
conformal mapping, see $7. 

The solution procedure is presented in $$3-6. Its accuracy and some of the 
conceptual ideas behind it are given in the Appendix. In  $9 we discuss unsteady non- 
reacting and reacting flows and present our results. 

2. Mathematical formulation 
The following idealizations are made to simplify the problem : 
(i) The fluid motion is two-dimensional. 
(ii) The fluid consists of two homogeneous incompressible media, burnt and 

(iii) The flame can be represented as a constant-pressure deflagration wave acting 
unburnt fluid. 
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as an interface between two incompressible media, and propagating with a speed 
equal to the local burning velocity relative to the fluid motion. 

(iv) The exothermicity of combustion is manifested entirely by an increase in 
specific volume due to conversion of unburnt fluid into burnt fluid. 

(v) Negligible buoyancy. 
(vi) Turbulent mixing dominates over laminar diffusion of species, enthalpy and 

mass fraction of burnt fluid. 
(vii) The chemical reaction can be approximated sufficiently accurately by an 

irreversible one-step chemical reaction scheme. 
(viii) The fluid satisfies the Newtonian constitutive assumptions for the relation 

between the stress tensor and the deformation tensor. 
(ix) The boundaries are adiabatic. 
On the basis of these assumptions the problem is determined by the following 

Conservation of mass gives 
equations and conditions. 

l/pDp/Dt = - V . U .  (1) 

Dw/Dt = 1/Re,,V2w. (2) 

The Helmholtz vorticity equation in dimensionless form is 

The equation of state for an ideal gas within the reaction zone, combined with the 
assumption of constant pressure across the reaction zone gives 

Pu/Pb = Tb/Tu. (3) 
Tb is the adiabatic flame temperature at constant pressure for the chosen equivalence 
ratio of premixed reactant and oxidizer. T, is the unburnt fluid temperature. 

Assuming conservation of enthalpy in a reference frame following the flame 
combined with the definition of enthalpy for a complete reaction and constant- 
pressure deflagration we have 

(4) 
where Ahf is heat of formation, and c p  is specific heat capacity at constant pressure 
for the premixed reactants, and qef = 0 K. 

h = Constant = Ahf + c p  (Tb - qer), 

Conservation of mass fraction of burnt fluid gives 

Df/Dt = w, ( 5 )  
where f = Mprod/(Mfuel +M,, +Illprod), and w is non-dimensional reaction rate. The 
kinematic boundary condition and no slip are given by, respectively, 

u-n = 0 and u - t  = 0 at all fixed walls. (6) 
The discrete approximation to the no-slip condition is satisfied within the numerical 
viscous sublayer, see $5.  Consequently the no-slip condition is only posed on a k i t e  
part of the infinite channel with the cavity, see $8. 

Uniform velocity a t  infinity is assumed: 

u = Ume,  at f c o .  (7) 

VE; = O  for E; = p , f , T , h ,  (8) 

Boundary conditions for scalar variables at all boundaries are 

where p is mixture density, f is mass fraction of burnt fluid, T is absolute temperature 
and h is specific enthalpy. 
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The initial conditions are 

u = Up,, for t = 0 (impulsive start), 
p = p u ,  f = O ,  T=T,, h = c , T ,  for t=0.  

Ignition condition for the flow field: 

p = pb for t = 7 in part of the fluid. 

The volume expansion due to this initial burning is neglected. 

343 

3. Numerical procedure 
According to Helmholtz’s theorem the velocity field can be uniquely decomposed 

into a vorticity-free and a divergence-free component provided the divergence and 
vorticity approach zero a t  infinity. Consequently the two-dimensional velocity field 
can be written in the form: 

(12) 

V $ = V . u  and V 2 + = - w ,  (13) 

where w = (V x u)-e, .  (14) 

u = V v + V  x +ez. 

It follows, taking the divergence and vorticity of this relation respectively, that 

To satisfy the no-slip condition in the presence of rigid impermeable walls we must 
have 

V x +e, = - Vcp at the walls. (15) 
To satisfy the kinematic boundary condition conformal mapping theory was used. 

On the basis of (12)-(14) the known solution to an inviscid potential flow problem can 
be perturbed by adding vorticity and divergence into the solution of a simplified 
viscous flow problem where only one wall is present, and then transplanted onto the 
domain of the channel with a cavity to give the solution to this more complex viscous 
problem. 

Using complex theory we replace (12) by 

d dC u,-iul/ = -(W,-iW,+W,)- 
dC dz 

where W,, iW, and W ,  are complex potentials giving the initial profile, the vorticity 
and the divergence perturbation respectively. 

On the basis of (16) the problem is split into the following three sub-problems : (I) 
to determine uniquely the conformal mapping function z =f (C)  and the initial 
velocity profile ; (11) to determine the unsteady non-reacting flow ; (111) to determine 
the unsteady reacting flow. These sub-problems are dealt with in $144. 

4. Conformal mapping and initial profile 
The conformal mapping used is the Schwarz-Christoffel mapping function. The 

derivative of this mapping, Milne-Thompson (1968), can be expressed in the 
following form : 

N dz - = Cexp (ih) n ( C - C k ) P k ,  
dC k-1 
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FIQURE 1. Computational domain in the z- and the c-plane. 

where bk = (ak/x)-l ,  ak is the internal corner angle (in radians) for the corner 
number k, c is a scaling parameter (real), h is a phase angle (real) and [ k  is a point 
in the c-plane on the closure of the domain D, corresponding to the corner k of the 
domain E in the z-plane. 

Integrating (17) leads to the Schwarz-Christoffel mapping function : 

In order to apply (18) to our problem it is necessary to determine the parameters : 

The problem is underdetermined, so two points and the phase angle can be chosen 
at  will. Our choice is A = x, zo = 0 and 6, = 1. According to Riemann’s mapping 
theorem, Henrici (1974), there will always exist a conformal analytic mapping which 
maps one to one the upper half-space D(q > 0) onto a polygon E in the z-plane where 
the closure E is not included. According to the Osgood-Caratheodory theorem, 
Henrici (1974), this transformation maps one to one the closure of the upper half- 
space onto the closure of the polygon chosen, provided the mapping is analytic in the 
upper unclosed half-space, and extends continuously to the closure. The proofs 
showing that the Schwarz-Christoffel transformation satisfies these theorems for D 
and E ,  both simply connected domains, are given in Henrici (1974). 

The integral (18) can generally not be inverted to find 5 = [ ( z )  for N > 2. In our 
case N = 6, see figure 1. Symmetry implies effectively N = 3. Consequently an 
iteration procedure using geometrical information to check the deviation from the 
conformal mapping we want is needed, see Trefethen (1979). 

To find the unknowns within a manageable number of iterations optimization 
theory is used. Our choice is to minimize the relative error in corner positions given 

zO, c, PI, .**,bN. -..) CN. 

by 
F(C, 52, 53) = max [ ~ ~ z ~ - & ~ ~ c / L c h ~  llz2-(&+zc)Ilc/Lchl (19) 
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subject to the inequality constraints Q > C2 > 1. L is the cavity length and H ,  is the 
cavity height. 

Using contour integration and the residue theorem it follows that cz is related to 
C and c3 through 

(20) 

where Hi is inlet and outlet height. 
It can be shown, Sand (1987), using the Kuhn-Tucker necessary conditions, Dorny 

(1975), that provided we stay within the feasible region, unconstrained optimization 
theory can be used. 

We use a conjugate gradient descent method due to Fletcher and Reeves, see 
Dorny (1975), to determine a descent direction for F. 

A modified version of Powell’s line search, Dahlquist, Bjmk & Anderson (1974), is 
used for optimization of the descent step. Details of the computational procedure is 
given in Sand (1987). 

f = t [ l -  (52- 1) 4H,2/(X2C2)lt 

The final transformation is then 

z = - [ (C(g2 - 1)-+ (g2 - g)+ (c2 - G)-l) dc ,  (21) 

where C = 0.996697, c2 = 1.64281 and Q = 1.93698. 
The maximum relative error in computed corner positions for the cavity using the 

procedure outlined is 1.2 x 
Our polygon is closed at both f a, see figure 1. We therefore need a source and 

a sink with equal strengths to satisfy the continuity equation. Owing to our 
symmetry requirement we get the complex potential 

Wo(O = m In [ (Y-Q)/(C+ &)I* (22) 

The dipole velocity field corresponding to this complex potential satisfies the 
kinematic boundary condition in the [-plane except at  f Q which transform into 
f a o  in the z-plane. 

The outlet and the inlet boundary conditions Vtpo = U, ‘e, at x = f ao are satisfied 
provided the flux out of the source in the upper half-g-plane is equal to the flux out 
of the channel in the z-plane. This determines the source strength m = Hi U,/n. 

Using the conformal mapping (21), chain differentiation and the complex initial 
profile (22) we get 

uz0 - iu,, = 2Hi U ,  (nC)-’ c3(c - g)-t (e - 1)+, (23) 

where C, c2 and Q are real variables. 

5. Unsteady non-reacting flow 
5.1. Velocity as a function of vorticity 

The velocity field is related to the vorticity distribution through a complex version 
of Biot-Savart’s law : 

where 52 is vorticity in the 5-plane and * denotes complex conjugate. 
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The vorticity distribution in the z-plane is given by the non-dimensional Helmholtz 
vorticity equation for two-dimensional homogeneous incompressible flow : 

Dw 1 
- = - V w .  
Dt Rech 

To solve this partial differential equation numerically without destroying the 
solution by numerical diffusion, we use the principle of fractional steps, Lie & Engel 
(1880). The splitting procedure applied (viscous splitting) consists of a convection 
fractional step followed by a diffusion fractional step. 

This is written symbolically as 

where d indicates that we consider a discrete form of the Helmholtz vorticity 
equation, and DIDt means the substantial derivative. 

A conceptual discussion of the procedure is given in the Appendix. Within the 
convection fractional step, vorticity is individually conserved ; consequently the 
following Lagrangian formulation can be used for the convective vortex motion : 

ric = l iuidt’  

where ti is the time of birth for vortex i. To improve convergence of the method close 
to the boundaries the computational domain is split into an inner and an outer 
domain. The inner domain represents a numerical viscous sublayer next to all walls. 

5.2. Outer domain 
It can be shown using the Cauchy-Riemann conditions and Stokes’ theorem that the 
circulation r = S2 dA is invariant with respect to the conformal mapping. Using a 
rectangular rule approximation and Chorin’s cutoff for the singular vortex core we 
get 

where (29) 

is used as the definition for the core radius in the g-plane. 
It follows from the invariance of the complex potential under the transformation 

and the fact that a vortex does not induce velocity on its own centre, see Routh’s 
rule, Milne-Thompson (1968), that the velocity of a vortex blob in the z-plane is given 
by 
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For Chorin's cutoff the last term is zero within the order of approximation, see 

The Simpsons fourth-order rule in time and a fourth-order Rung-Kutta in space 
Sand (1987). 

give the following scheme for the vortex motion: 
Zn+l = n 

I 2, +i[uEi(e) +4ugi(C?zt) + u g t ( C ? ~ p )  +i{u,",(C) +4u,"{(Czt) + ~ ; ~ ( G p ) ) l  At. (31) 
(Since u, and uy are functions of 6 this scheme is equivalent to a fourth-order 
RungeKutta scheme. ) 

Here 

Z1"+iAZ1 ZrGAZt+iAZ* 

zr" i Z 1  
ezt = e +I [f(C)I-'dz and e T p  = !?It +s,.+l, [f (C)I-' dz, 

where A21 = [U, (C)  +iU&31 At and A22 = [%(CZt) +iuy(Gt)l At, 
f(C) = dz/dC is given by the derivative of the transformation. 

rule a minimum of 10 subintegration steps were taken during the computation. 

generalized functions : 

The integrals are computed by using a fourth-order Runge-Kutta scheme. As a 

The diffusion equation has a solution in the presence of boundaries given by 

wd = ~ ~ S w , ( A ' , t , ) G , ( A , A ' , t ) d A ' +  JXo: -(S,t')G,(S,S',t')dt'W, (32) 

where S is the closure of the domain A. The first term is due to the initial distribution 
of vorticity, while the second term is due to vorticity creation or destruction at the 
boundaries. Here 

It can be shown, see Chorin & Marsden (1979) for the first term and Sand (1987) 
for the second term, that wd can be represented stochastically by a random walk 
drawn from a normal distribution with a probability density function given by 

f = (4x AtRe;;)-' exp [ - (t2 +s2)/(4AtRe;l)] (33) 
(zero mean value, and variance cr2 = 2AtRe;;, where At is the discrete time step used 
for vortex motion). 

The final position of an individual vortex is then due to convection and diffusion 
(the latter represented by the random walk procedure) : 

rt = rfc +& e, + 76 ey. (34) 

and qi are here generated on the basis of (33) using a Box-Muller transformation 
and a random generator, Dahlquist et al. (1974). 

5.3. Inner domain 
To improve convergence close to boundaries a numerical viscous sublayer with 
thickness S is defined where Prandtl's boundary-layer assumption is satisfied 
@/ax - 6 and S 4 1). 

I2 FLM 229 
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get 
From the vorticity definition and the matching condition for the velocity field we 

(35) u(z, y, t) = uou - o(z, y‘, t )  dy‘ + O(S2). 

The continuity equation and the kinematic boundary condition give 

u(X,y’,t)dy’+0(S2). ax 

The detailed discretization procedure of (35) and (36) is given in Chorin (1978). This 
method is known as the vortex sheet method, and is adopted in this work for the 
inner domain. 

The explicit forward Euler difference scheme in time and the random walk for the 
diffusion fractional step in the y-direction give the following algorithm for motion of 
vortex sheets within the viscous sublayer : 

(r);+l = (r): + (u); At + qi e,, (37) 
where we have dropped the local subscript for notational convenience. 

5.4. Hatching of the inner and the outer solutions 
The matching procedure used follows Cheer (1979). It ensures that the velocity field 
and the vorticity distribution per unit area are continuous at the interface between 
the inner and the outer domain, i.e. 

uou = ui a t  yt = S (38) 

and r, = y, h. (39) 
Here r, is the circulation of vortex j and y, is the jump in velocity across the 
corresponding vortex sheet. It follow that the vortex core is given by 

r,  = h/n. (40) 

6. Unsteady reacting flow 
6.1. VeZocity as a function of divergence 

The divergence distribution gives the following contribution to the velocity field : 

where E is divergence in the [-plane and * denotes complex conjugate. 
It can be shown using the Cauchy-Riemann conditions and the Gauss theorem 

that the source strength q = E d P  is transformation invariant. Using a rectangular 
rule approximation and Chorin’s cutoff for the core radius of the source we get 

- (5-G)* 1 --]3. 25 (42) 
115- 5: II max { 115- c: I1 9 roc) (6 - C) dz 

The last term ensures that the divergence goes to zero a t  infinity, see figure 2. 
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FIGURE 2. Particular solution of Poisson's equation for the volumetric expansion due to a 
combustion source in the channel with cavity. 

6.2. Source strength 
The source strength and the core radius used are those of Ghoniem et al. (1982). They 
treat the flame as a one-dimensional deflagration wave. Details of their analysis are 
given in the same reference. The core radius is given by 

To = h,b/2nc, (43) 

where h,, is the length and width of the square control volumes for motion of burnt 
fluid. 

The source strength is given by 

where f is the volume of burnt fluid within a combustion cell divided by the cell 
volume. 

The ratio pu/pb  is in principle determined from (3) and (4 )  where Ahf and c p  are 
functions of the reactants used and the equivalence ratio chosen. 

The rate of change in f is determined within the computer code by the use of a 
simple line interface algorithm to represent the interface between burnt and unburnt 
fluid (the flame), and the use of Huygens' principle to move the flame normal to itself 
because of the local burning velocity. 

The source strength used in this simulation stems from the one-dimensional 
analysis of Ghoniem et al. (1982). It is felt that it is appropriate to do an analysis 
based on mixture density and the continuity equation as well. 

We define the mixture density within a control volume AV as 

P =fpb+ (l  -f) pu. (45) 

From Leibnitz' rule, the Gauss theorem and the continuity equation in a 
coordinate system following the fluid we get 

where us is the relative velocity between the boundary and the fluid in the moving 
12-2 
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coordinate system. Assuming that the control volume used for combustion follows 
the fluid motion within the combustion fractional step we get 

This source strength q depends explicitly on f, unlike that of Ghoniem et al. We define 

k = qAt, , /Af .  (48) 

= hEb In (pu/pb)' (49) 

The average value of k with respect to fE[O, 11 is then 

For p u / p b  = 6, k = 1.8hEb. Therefore our q, which corresponds to k = 2.5hEb is 39 YO 
too high on the average. I n  the experiments of Vaneveld et al. (1982), flashback 
occurred for pu/pb in the range of 7 to 7.5 depending on whether the walls were cooled 
or not (the latter case corresponds to adiabatic walls which is assumed in this work). 
The lower density ratio used partly compensates for the higher q and reduces the 
deviation to 25 YO. 

6.3. Flame motion 
In the thin reaction sheet regime for moderate turbulence intensity, the main effect 
of turbulence on the combustion is to increase the overall combustion rate by 
enhancing the flame area through wrinkling. 

In  agreement with the assumption of the fluid consisting of only two incompressible 
media, burnt and unburnt fluid, the source term in the conservation equation for 
mass fraction of burnt fluid will always be located a t  the interface between burnt and 
unburnt fluid, and so will the divergence term in the conservation equation for 
mixture mass. Consequently these equations can be replaced by an interface- 
following algorithm with a divergence distribution a t  the interface representing the 
volume expansion due to the chemical reaction zone. 

The interface representing the flame front is given by 

Dr 
Dt 
I- - u+SUnf, 

where re is the position vector of an infinitesimal element of the interface, S, is the 
local burning speed of the flame relative to the fluid motion and nf is a unit vector 
normal to the interface. 

The differential equation (50) can in discrete form be replace by two fractional step 
operators : 

where r is fixed in space, while re follows the flame. 
The first fractional step operator moves the flame through advection, while the 

second moves the flame relative to the fluid because of burning. In  the first fractional 
step the mass fraction of burnt fluid is considered to be conserved individually with 
respect to the fluid motion and in the second with respect to the motion of the 
reaction zone relative to the fluid due to burning. This means that in the second 
fractional step the source term in the conservation equation for mass fraction of 
burnt fuel, which is located a t  the reaction zone, is treated as an equivalent 
convective term relative to the fluid. 
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FIQURE 3. Grid showing where the velocities and the volume sources are computed 
during the flame motion. 

6.4. Numerical implementation of the Jlame motion 
A control volume approach is used for the conservation equation for mass fraction 
of burnt fluid. The mass fraction of burnt fluid is represented at the centre of the 
control volume, while a staggered grid is used for the velocities, see figure 3. 

Chorin’s extension of the simple line interface calculation algorithm of Noh & 
Woodward (1976), is used to represent the flame as an interface between burnt and 
unburnt fluid a t  subgrid level within a control volume. This is done with horizontal 
and vertical lines. 

Pattern recognition is used to determine the form of the interface on the basis of 
volume fractions of burnt fluid in the neighbouring control volumes. 

The simple line interface calculation algorithm recognizes four principally different 
configurations : a vertical interface, a horizontal interface, a rectangular corner and 
a neck, see Chorin (1980). 

The neck is located by a constrained random choice, principally a sampling of 
Glimm’s solution to a two-dimensional Riemann problem for a weak deflagration 
wave. The detailed requirements which the volume fraction of burnt fluid in the four 
neighbouring control volumes have to satisfy to recognize the listed configurations 
are given in Chorin (1980). 

In the second fractional step the flame moves normal to itself owing to burning. 
Generally it is a difficult task to compute the normal unit vector to the interface 
which has to be simply connected. To avoid this difficulty Huygens’ principle is used 
to locate the interface. The flame is moved in all directions (here eight are necessary 
to affect all neighbouring cells), and then the optimum spreading of the flame due to 
burning is chosen as the envelope condition. 

To avoid directional preference a random angle E [0,1n] is added to each of the 
original eight directions within each combustion sub time step. 

7. Corner treatment 
In a potential flow problem a discontinuity in the boundary slope implies that the 

velocity in the fluid close to the discontinuity goes to infinity or to zero as we 
approach the singularity from the fluid side. Both cases are difficult to handle. We 
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therefore want to get rid of these singularities locally. However, they are needed 
elsewhere in the flow to generate the right velocity field. Therefore we use locally a 
rounding technique given in Henrici (1974). 

We distinguish between two cases, convex and concave corners seen from the fluid. 
The singular factor in the transformation is replaced by a polygon given by 

(f;-ck)’” = (f;-&)’k+B(f;) (c-c;)’”. (52) 

The concave corner seen from the fluid is given by (52) for p k  > 0 and the convex 
corner for pk < 0. In  order to remove the singularity from each of the terms we define 

and (54) 

Using the condition that (52) should be satisfied for f; equal to G and &, and requiring 
in addition that 5;, and g are symmetrically located with respect to c k ,  gives 

To avoid a priori separation of the boundary layer, the numerical viscous sublayer 
is defined as being connected past all internal corners of the flow. If a vortex sheet 
moves, in the local x-direction, a discrete convective fractional step sufficiently far 
to pass the corner and end in the outer flow region due to the corner geometry, it is 
placed in the local coordinate system past the corner as if the two local coordinate 
systems were connected without a corner in between. If however the vortex sheet has 
moved sufficiently far normal to the numerical viscous sublayer in the discrete time 
step for it to be located outside the numerical viscous sublayer, its global position will 
be relative to the corner, and become redefined as a vortex blob and its mirror image 
with respect to the axis 6 = 0. 

8. Numerical simulation 
The numerical simulations consist of one simulation of unsteady flow of 

homogeneous incompressible fluid in a channel with a cavity, and one simulation of 
unsteady reacting flow in the same channel with a cavity, see $9. 

8.1. Characteristic scales and geometry 
The characteristic length L,,, velocity u,, and time qh for the problem were chosen 
as maximum channel width H, initial inlet velocity U ,  and H/U, ,  respectively. The 
channel with a cavity is symmetrical with respect to the y-axis with its inlet to the 
left, see figure 1. The dimensions of the part of the channel with the cavity considered 
are: LengthlL,, = 3.00, width at cavity/L,, = 1.00, inlet heightll,, = 0.50 and 
cavity length/L,, = 1.42. 

8.2. Parameters used 
The non-dimensional time step for the vortex motion was chosen as At = 0.1. The 
non-dimensional thickness of the numerical viscous sublayer for all walls was chosen 
as 6 = 2u, where uz = 2At(ReCh)-’ is the variance of the diffusion fractional step of 



Unsteady reacting Jlow in a channel with a cavity 353 
Y 

t = 3.0 t 

X 
t = 4.0 t . ... 

t = 5.0 t 1 - 5 5  t . 

I = 1.5 t 

FIGURE 4. Time-development of the unsteady velocity field for non-reacting flow, 
at Re = 20000, U,, = 0.026L0,. 

the vortex motion and Rech = UchLch/v is the characteristic Reynolds number. 
On the basis of the actual Reynolds number UchLch/(2v) = 20000 it follows that 
6 = 2 4 5 ~  lop3. 

The non-dimensional vortex sheet length was chosen as 0.1, and the maximum and 
minimum sheet strengths per vortex sheet length were chosen to be 0.5 and 0.025, 
respectively. The ratio between the time step for the deflagration wave relative to the 
fluid and the time step for the vortex motion was selected as Atc,/At = 0.2. The gas 
is lean premixed propane and air with density ratio between unburnt and burnt fluid 
pu/pb  = 6 and corresponding non-dimensional local burning velocity Xu = 0.02. The 
non-dimensional length of the square combustion cell associated with a volume 
source was chosen as hcb = 0.0357. 
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FIQURE 5. Time-development of the unsteady velocity field for reacting flow, and filled contour 
plots of the volume fraction of burnt fluid, at Re = 20000, U,, = 0.025L0,. 
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FIQURE 6. Time-development of the root-mean-square value of (a) the x-component and (b) the y- 
component of u' for non-reacting flow, at Re = 20000, AXIL,, = 0.25 and U,, = O.IL,,. Each curve 
represents the average of four samples taken at equally spaced points within the interval of time 
4.5 to 6.0 (left-hand figures) and 6.0 to 7.5 (right-hand figures). 

X 

FIGURE 7. Time-development of the root-mean-square value of (a) the x-component and (b) the y- 
component of u' for reacting flow, at Re = 20000, Ax/L,, = 0.25 and U,, = O.lL,,. Each curve 
represents the average of four samples taken at equally spaced points within the interval of time 
4.5 to 6.0 (left-hand figures) and 6.0 to 7.5 (right-hand figures). 

8.3. Graphical presentation 
The results from the numerical simulations are presented as graphical plots. The 
velocity fields are visualized on a grid in the z-plane. The velocity field for non- 
reacting flow is given in figure 4. The scalar density field was represented by filled 
contour plots using a grey tone scale. This was done on the basis of the value of the 
volume fraction of burnt fluid within a combustion cell, represented as an average 
value at its centre, see figure 5. The root-mean-square values of u' and v' are shown 
for non-reacting and reacting flows in figures 6 and 7, respectively. The averaged 
streamwise velocities for non-reacting and reacting flows are shown in figures 8 and 
9, respectively. 
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X 
FIQURE 8. Time-development of the averaged streamwise velocity for non-reacting flow, at 
Re = 20000, Ax/Lch = 0.25 and U,, = O.iL,,. Each curve represents the average of four samples 
taken at equally spaced points within the interval of time (a) 4.5 to 6.0 and ( b )  6.0 to 7.5. 

X ~. 

FIQIJRE 9. Time-development of the averaged streamwise velocity for reacting flow, at Re = 
20000, Ax/L,, = 0.25 and U,, = O.lL,,. Each curve represents the average of four samples taken 
at equally spaced points within the interval of time (a) 4.5 to 6.0 and ( b )  6.0 to 7.5. 

9. Discussion 
9.1. Unsteady jlow 

A numerical simulation of a two-dimensional unsteady flow in a channel with a 
cavity has been carried out. The fluid is given an impulsive start as its initial 
condition. In principle the impulsively started flow problem has two solutions, one 
continuous and one discontinuous, where the streamlines bend and do not bend into 
the cavity, respectively. We assume that no corner is perfectly sharp and choose the 
continuous solution, see figure 10, as the initial condition. 

When calculating unsteady flow downstream of a trailing edge the Kutta- 
Joukowsky hypothesis can be used to show a boundary-layer separation at  the 
edge. The effect of viscosity on the outer flow field (the wake) can then be accounted 
for by generating discrete vortex blobs with cores sufficiently large to maintain a 
continuous smooth velocity at  the separation point. However, in this problem where 
the position is not known a priori, or has an unsteady location, this strategy does not 
work. 

The hybrid random vortex method can be used to solve this problem. Vortex 
sheets are generated to maintain no slip at  locations distributed evenly along the 
wall. To avoid locating the separation point a priori the vortex sheets can only leave 
the numerical viscous sublayer, which is defined also to exist past sharp corners, by 
motion normal to it. 

When a vortex sheet leaves the numerical viscous sublayer i t  is redefined from only 
inducing velocity locally between itself and its normal projection on the wall to a 
vortex blob and its mirror image with respect to the wall location, which induce 
velocity globally. The vortex blob has a core with a size and strength designed to 
maintain the local tangential velocity smoothly after the redefinition, see $5.4. In 
consequence the inner solution, given by the vortex sheet distribution, combined 
with the matching procedure acts as a continuously distributed Kutta condition. 
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FIQURE 10. The continuous potential flow solution used as initial profile for the viscous 

flow problem. 

Wherever a boundary-layer separation takes place, vortex sheets are converted into 
vortex blobs to account for the effect of viscosity on the flow field, which manifests 
itself as a wake downstream of the separation point. 

Prandtl suggested zero shear stress at the wall as the criterion for separation of a 
boundary layer. It can be shown, Schlichting (1968), that separation of a boundary 
layer can only occur if the flow field is retarded. Through continuity, the widening 
of the channel retards the flow, while the narrowing downstream of the cavity 
accelerates it. Consequently, from a steady-state point of view, the boundary layer 
should separate at the upstream cavity edge and reattach at  the downstream cavity 
edge. However, large vortex structures form and induce unsteady local retardation 
and acceleration as they move, so Prandtl’s criterion for steady boundary-layer 
separation does not apply. 

Moore, Rott and Sears, see Williams (1977), suggested a criterion which also covers 
unsteady separation. They assumed that separation would occur at a location of zero 
shear stress in a coordinate system moving with the speed of the separation point. 
This criterion reduces to Prandtl’s separation condition in the steady situation. The 
simulated transition to fully developed unsteady flow is an impulsively started flow 
problem. Therefore some information can be extracted. The numerical simulation 
done for Re = 20000 predicts separation of the boundary layer along the lower inlet 
wall at the step location, and for the boundary layer along the upper wall at the same 
x-location. This can be seen in the early stage of development of the flow field, figure 
4, where plots of the velocity field show roughly the instantaneous locations of the 
separation points in the form of wakes. 

In this early stage the boundary layer reattaches further downstream close to the 
cavity end. This is in agreement with our geometrical considerations, and Prandtl’s 
criterion fpr a steady separated boundary layer. As the simulation evolves, the 
velocity field changes its character from steady to unsteady. From t = 4.5 a large 
vortex structure is developing, see figure 4. The vortex structure accelerates the 
outer flow at the upper wall, and the boundary layer reattaches locally at  
approximately the same x-position as the centre of the vortex structure. From 
t = 6.5 the large vortex structure approaches the downstream cavity corner. The 
vortex structure retards the flow at the lower outlet wall and accelerates the flow at 
the upper outlet wall. The boundary layer separates at the lower inlet wall and 
remains reattached at the upper wall. 

The time-varying reattachment and separation are secondary effects induced by 
the vortex structures within the cavity. Since reattachment and separation points 
are moving as a consequence of the velocity induced by the large vortex structure, 
and seem to be roughly stationary seen from a coordinate system moving with the 
vortex structure, the simulation seems to be in agreement with the Moore, Root and 
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Sears’ criterion for unsteady boundary-layer separation. However, this numerical 
simulation was not designed to study separation and reattachment of the boundary 
layer. Therefore quantitative results like zero shear a t  the edge of the visualized wake 
and the location of the saddlepoint for the streamlines a t  the separation point seen 
from the moving coordinate system, which are found in physical experiments, Ho 
(1986), are not computed or visualized, respectively. 

Experimental results for comparison are not available for the channel with the 
cavity geometry. Pitz & Daily (1983) have done measurements of mean velocities 
and turbulence intensities in a combustion tunnel downstream of a rearward-facing 
step. The tunnel was three times deeper than it was wide, and therefore considered 
to be approximately two-dimensional. One of their unsteady flow cases was carried 
out at Re = 22000. Since Pitz & Daily did not have a cavity within their channel, 
only a sudden expansion of the channel, a comparison of location of reattachment 
points is irrelevant. However, quantitatively their average velocity profile, root- 
mean-square values of u’ and turbulence intensities might have some similarity with 
ours. It should be noted that the narrowing of the channel by the cavity end 
constrains the width of the mixing layer downstream of the inlet cavity edge 
compared to the rearward-facing-step case. The trailing cavity edge also provides a 
possible feedback mechanism which does not exist with the rearward-facing step. 

I n  figure 8 the average streamwise velocity for non-reacting flow is shown as a 
function of time. Only the last time interval, t = 6.0 to 7.5 seems comparable with 
experiments, since the flow field within the other intervals is not fully developed. The 
recirculation behind the inlet cavity edge and behind the step are common for both 
geometries, see Pitz & Daily (1983). The simulated turbulence intensity in the 
transverse flow direction decays compared to that in the streamwise direction in the 
area close to the walls. This is also the case in Pitz & Daily’s experiments. However, 
their turbulence intensities increase more distinctly towards the centre of the mixing 
layer. The failure to  reproduce this tendency may be caused by the limitations 
imposed by the geometry on the length and width of the mixing layer, or by 
hydrodynamic interaction between the vortex structures inside the cavity and the 
boundary-layer separation upstream of the cavity forcing the separation to  be 
unsteady. The non-dimensional time step used in the simulation may also be too long 
to resolve the highest frequency content of the turbulence intensity, thereby limiting 
its size. 

9.2. Unsteady reacting flow 
The simulated unsteady two-dimensional flow field of a homogeneous incompressible 
fluid was used as the initial condition for the unsteady reacting flow problem. The 
fluid was assumed to consist of lean premixed propane and air. It was ignited a t  the 
lower inlet corner of the cavity a t  time t = 2.9 by assuming four combustion cells 
filled with burnt fluid. The volume expansion due to the initial burning was 
neglected. 

The unsteady non-reacting velocity field, used as the initial condition for the flame 
stability problem, was not fully developed. This can be seen from the turbulence 
intensity plots. The ‘early’ ignition was chosen to  save computer time. It was 
assumed that the flame would not severely disturb the flow field during the first stage 
of development, t = 3.0 to 5.0. A comparison of the development of the simulated 
unsteady flow field with and without the combustion transient shows some difference 
in the recirculation pattern within the cavity. This is also indicated by the averaged 
velocities, see figures 8 and 9 for averaged non-reacting and reacting flow, 
respectively. 
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From the simulations we see that the flame shoots up from the ignition corner of 
the cavity, basically rolling on a large recirculation vortex as it passes the upper 
corner of the outlet side of the cavity. The combustion rate then increases. The 
volumetric expansion, caused by the combustion, blocks off the flow field upstream 
and increases its speed downstream. Over time the flame crawls upstream along the 
separated boundary layer at  the lower inlet wall. In  effect the flame motion ends in 
a flashback. 

Generally a flashback is considered to have four possible origins : auto-ignition 
upstream of the flame ; classical flashback as a consequence of the local burning speed 
exceeding the flow velocity of the unburnt mixture either in the boundary layer or 
along the flow axis; flame propagation through reverse flow fields that may occur 
when the characteristic dimension d of a disturbance is of the same order of 
magnitude as the distance L between the disturbance and the flame holder ; and pre- 
ignition of a separated flow region that may take place when d is much less than L,  
Plee & Mellor (1978). In the present combustion model auto-ignition and pre-ignition 
are not taken into account. We are left with the classical flashback and disturbance 
resulting in reversed flow fields. Since we do not model acoustics, hydrodynamic 
oscillations are the only possible source for a disturbance. In fact hydrodynamic 
oscillations within the cavity interact with the boundary layer upstream, so a 
combined effect of the classical flashback and reversed flow due to hydrodynamic 
oscillations is possible. 

The rolling of the flame on large vortex structures observed in the numerical 
simulation is in agreement with the experiments of Vaneveld et al. (1982). They use 
a Schlieren photographic technique to visualize the flame motion, and argue that the 
flame front basically stays parallel to the instantaneous streamlines of the vortex 
structures because of the small local burning speed. Therefore, the motion of the 
flame upstream of the inlet cavity edge can be considered to be a relay motion of the 
flame from one vortex structure big enough to move the flame above the cavity edge, 
to a smaller vortex structure located in the unsteady separated boundary layer 
upstream of the cavity edge, which carries it further upstream. The simulation 
indicates that this is the case. 

A second effect is the increased violence of the combustion due to vortices pulling 
out new branches of the flame surface leading to a dramatic increase of the flame 
area. Since the change in volume fraction of burnt fluid per unit time is proportional 
to the flame area, the volume expansion increases as well, and slows down the flow 
velocity in the upper part of the cavity, while increasing the flow velocity further 
downstream. The third effect is the unsteady boundary-layer separation, which 
makes it possible for the flame to separate the boundary layer further upstream as 
it moves within the wake of the boundary layer. The volumetric expansion retards 
the velocity field locally, as it moves with the flame, and thereby induces an unsteady 
separation of the boundary layer moving with the speed of the flame relative to a 
fixed reference frame. See the preceding section for a discussion of unsteady 
separation and reattachment . 

However, this simulation can only be considered as an indication of the method’s 
ability to simulate a flashback. It is possible that the simulated transient, though 
rather smooth due to the ‘early’ ignition and the drop of the initial volumetric 
expansion, has caused the necessary separation a t  the cavity edge. A complete 
simulation procedure to clarify this uncertainty would result from following the 
experiments of Vaneveld et al. (1982). Their combustion tunnel, which is three times 
deeper than it is wide, and therefore approximately two-dimensional, is in principle 



360 I .  0. Sand 

a channel with cavity. Their flame is fist stabilized behind the upstream cavity edge 
and then triggered to flashback by a slight increase in the flow rate. Taking their 
channel width and inlet velocity our characteristic time qh = Lch/Uch is approxi- 
mately 4 ms. It follows that the part of the simulation which is of interest for the 
flashback lasts about 18 ms (TCh(8.5-4.O)). Experiments show that the interval of 
time which covers the transition to flashback is close to 280 ms, see Schlieren 
photographs taken by Vaneveld et al. (1982). Of the hydrodynamically triggered 
phenomena reported by them, the ‘chucking’ has a time frame comparable to the 
flashback simulated. 

To summarize : in this simulation we have used the combustion model of Ghoniem 
et al. (1982). To satisfy the kinematic boundary layer we have used a conformal 
mapping of the Schwarz-Christoffel type. In agreement with unsteady boundary- 
layer theory (Ho 1986; Williams 1977), we have avoided direct and indirect use of the 
Kutta-Joukowski hypothesis (which breaks down in this case) by extending a 
numerical viscous sublayer continuously past the corners and also cutting off the 
corner singularities locally. In  effect the boundary layer is free to separate anywhere. 
Therefore fluid dynamic oscillations within the cavity, manifested by vortex 
structures, are free to interact with the boundary layer and cause unsteady 
separation which is necessary to achieve a hydrodynamically triggered flashback as 
long as the net velocity upstream of the cavity inlet is higher than the burning 
velocity. 

10. Conclusions 
The numerical implementation of the hybrid random vortex method predicts, for a 
two-dimensional flow of homogeneous incompressible fluid, geometrically induced 
separation and reattachment of the boundary layer without the separation point 
being given a priori. 

The numerical simulation resolves an unsteady flow field where vortex structures 
form and interact with the boundary layer and induce time-dependent separation 
and reattachment. 

The main turbulence production within the flow field seems to be due to unsteady 
separation and unsteady reattachment of the boundary layer. The simulated 
turbulence intensities seem reasonable. However, the number of samples stored for 
analysis is too small to quantify the accuracy of the simulation performed. 

The low-Mach-number combustion model of Ghoniem et al. (1982) mimics the 
motion of a flame in a lean mixture of propane and air very nicely. In  particular, the 
interaction between the flame and the boundary layer works well from a 
hydrodynamic point of view. 

A complete simulation, where a flame is anchored downstream of the inlet cavity 
edge and then perturbed to flashback, has not been carried out. The simulation was 
disturbed by the combustion transient. However, a flashback of this type is a 
transient in itself, so the same mechanisms are present in both cases. 

Hydrodynamic oscillations can lead to a flashback. However, the flashback seems 
to be due to a combination of three effects : a relay motion of the flame from one vortex 
structure to another, general blockage of the flow field caused by the volume 
expansion, and locally induced separation of the boundary layer ahead of the flame. 
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Appendix A. Comments on the numerical accuracy and convergence of the 
solution 

The convergence and accuracy of the simulated velocity field depend on the 
numerical scheme for the inner problem, the outer problem and on their matching 
procedure. 

In the case of unsteady non-reacting flow, the numerical procedure simplifies to 
the hybrid random vortex method (Cheer 1979; Ghoniem et al. 1982). This method 
consists of the random vortex method (Chorin 1973) for the outer problem, and the 
vortex sheet method (Chorin 1978) for the inner problem. 

The random vortex method and the vortex sheet method are in principle direct 
solution procedures for the NavierStokes equations through the Helmholtz vorticity 
equation and a relation between the vorticity distribution and the velocity field. The 
Helmholtz vorticity equation is solved in two fractional steps, a convective and a 
diffusive step. This ‘viscous splitting’ has the effect that the numerical diffusion 
within the convective terms does not compete with the diffusion terms. Owing to the 
splitting the numerical diffusion only alters ‘the initial ’ conditions for the diffusion 
fractional step. In an unsplit solution procedure the diffusion term is K l/Rech. For 
a large Reynolds number the numerical diffusion from the convective terms which is 
independent of the Reynolds number, will dominate the physical diffusion. In 
consequence ‘The stochastic nature ’, of the deterministic solution, gets lost. The 
Lagrangian motion of individual vortices reduces in principle the numerical diffusion 
within the convective fractional step. However, if the numerical scheme used for the 
vortex motion is not accurate, an error acting as numerical diffusion will be 
introduced in the vortex distribution. To minimize this numerical diffusion the 
vortices were moved in the z-plane using a Simpsons fourth-order rule for the time 
integration. It is well known that in this case, where the velocity field is only a 
function of 5, see equation (31), this scheme is equivalent to a fourth-order 
Runge-Kutta scheme. Beale & Majda (1981) have shown that provided each of the 
fractional step problems converges globally, the random vortex method converges in 
time at At/Rech. Hald (1979) has proved that the vortex method, with a given set of 
constraints on the vortex core, gives a velocity field which converges globally 
independent of time towards the solution of Euler’s equations. The convergence in 
space is cc h2, where h is the distance between the vortices. Hald (1985) later proved 
that the rate of convergence in the time variable is of fourth-order if the classical 
Runge-Kutta method is used, and the flow is sufficiently smooth. In particular Hald 
proves that the constraint he used on the vortex core in his earlier work, was too 
restrictive. His new proof also covers Chorin’s ‘cutoff’ which is used in this work for 
the vortex core distribution. Majda & Beale (1982) have proved that a weight 
function can be used to construct vortex cores such that any space accuracy can be 
achieved. 
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The solution to the diffusion fractional step problem is approximated by the 
random walk, which is a stochastic representation of an analytic approximation to 
the solution. Chorin (1973) has estimated an error bound for the random walk as 
cc (i/Bech)i. 

All the proofs and estimates are done without the presence of boundaries. The 
kinematic effect of a wall on the convection fractional step problem is in our 
simulation taken care of by including a mirror image distribution of the vortices with 
respect to the wall location wanted. A conformal mapping of the Schwarz4hristoffel 
type is used to transplant the velocity field induced by a vortex and its mirror image 
with respect to the wall onto the channel with cavity domain. This is in principle the 
same as adding an infinite series of vortex blobs and mirror images and their images 
etc. with respect to the wall locations. From a conceptual point of view this should 
not change the proved convergence of the velocity field derived from the convection 
fractional step vorticity distribution towards the solution of Euler’s equations. Since 
the diffusion equation changes into another type of equation if the variables are 
transformed by a conformal mapping, a similar procedure cannot be used to handle 
the effect of the walls on the diffusion fractional step. However, locally in the 
physical plane, the wall effect is taken care of by a mirror image distribution whose 
effect is included by imposing reflection on the random walk. The matching zone at  
the edge of the inner and the outer flow domains acts as a sink and a source for 
vorticity for both fields, while the wall acts as a vorticity source for the inner field. 
Consequently the proofs and estimates referred to, which are all developed for an 
infinite space without walls and vorticity creation or destruction, do not in principle 
apply in our case. However, judging from the procedure used in these simulations to 
build up a unsteady flow, a sink for the vorticity field stabilizes the flow, while a 
source destabilizes it. The effect of the vorticity created at the wall is to perturb the 
potential flow through spreading of vorticity into an unsteady viscous flow. 
Therefore the creation of vorticity, which in principle is a destabilizing procedure, is 
correct as long as the perturbed potential flow converges towards the viscous 
unsteady flow as function of added vorticity. Chorin’s vorticity creation procedure 
combined with the matching procedure for the inner and outer solution, acts in 
principle as a continuously distributed Kutta condition. If the flow field retards 
locally, a local separation of the boundary layer takes place because of the increased 
concentration of vortex sheets. The separation is realized by a wake downstream of 
the separation point. This wake consists of vortex blobs, which have been converted 
from vortex sheets as they leave the numerical viscous sublayer. The vortex blobs 
induce velocity globally and retard the flow locally, maintaining the separation. If 
the flow is accelerated locally, reattachment of the boundary layer follows, realized 
by the disappearing of the wake. This is a consequence of a decreased concentration 
of vortex sheets locally. The mechanism necessary for keeping the vorticity 
perturbation of the potential flow under control such that the solution does not 
diverge, is therefore present. 

The comments so far apply to the unsteady reacting flow field as well. However, 
the conservation equation for the volume fraction of burnt fluid is in principle solved 
by a control volume approach, and relies on a grid, unlike the random vortex 
method. Acoustic waves are not modelled, therefore numerical dissipation is 
synonymous with numerical diffusion. We can see the numerical diffusion manifest 
itself through a distributed reaction zone, see figure 5.  However, part of this 
‘smearing ’ is caused by the contour plot routine used in the graphical presentation 
which does not recognize a sharp line interface as well as the simple line interface 
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algorithm. A smearing error is introduced by locating the velocity sources, 
representing the reacting flow, at  the centre of the combustion cells. In  agreement 
with the combustion model, which handles burnt and unburnt fluid outside the 
reaction zone as being incompressible, the volumetric sources should have been 
located at the interface, see Sethian (1984). An improvement can be achieved by 
locating each source through interpolation, at  the averaged interface location within 
a cell containing part of the interface. The average combustion rate within the 
channel is possibly dependent on the grid resolution used for the Lagrangian motion 
of the flame. In  principle, since the flame is assumed to be infinitesimally thin, there 
is no limit to how folded the flame area can become as function of the grid resolution 
used, and therefore there is no limit to how fast available fluid can burn. The 
principle limitation is therefore the entrainment of unburnt fluid through turbulent 
mixing. The turbulent mixing as represented here depends on both the grid 
resolution and the resolution of the turbulent velocity field. The time step for the 
vortex blob motion and circulation of the vortex blobs set an upper limit for the 
frequency resolution. 

The numerical boundary conditions affect the accuracy of the solution. In this 
work the vorticity is set to zero downstream of the computational domain for 
unsteady viscous flow. This leads to inaccuracy in the resolution close to the 
downstream end of the domain. Our convenient artificial boundary condition can be 
replaced. Clements (1973) computed, in his vortex simulation of a free flow behind 
a thick splitter plate, the area-weighted average effect of clusters of vorticity. He 
followed them sufficiently far downstream to get negligible contribution from them 
in his defined area of interest. Basically this approach represents the same as 
continuing a rough Eulerian grid downstream for finite-difference schemes. 

To maintain high accuracy in the motion of the discrete vortices, we have used 
Simpsons fourth-order rule for the time integration. It can be shown that, since the 
velocity field is a function only of g, this scheme is equivalent to a fourth-order 
Runge-Kutta scheme. The use of a higher-order scheme is required to converge 
towards an unsteady flow field which is not particularly smooth, see Hald (1985). To 
maintain high accuracy in the correspondence between the z- and the [-plane we have 
used a fourth-order Runge-Kutta scheme with a non-dimensional space step equal 
to & of the non-dimensional time step. All numerical computations were carried out 
with double-precision accuracy. 

In figure 10 the streamlines for the continuous potential flow solution are traced 
within the channel with a cavity, using in the conformal mapping a set of accessory 
parameters computed with the optimization procedure outlined briefly in $4.1. To 
check the accuracy of the transformation, the velocity due to the potential solution 
was computed at the walls. With the exception of the corner area and the area close 
to the point x = 0 and y = H ,  the relative error is within 5 x The term ‘error’ 
here refers to the kinematic boundary condition which requires that the normal 
component of the velocity should be zero at  the wall location. 

The number of vortex blobs was 3000-4000 for approximately fully developed 
flow, and the number of vortex sheets 150CL2500. The number of burning combustion 
cells within each combustion time step Atcb was 40CL600 for the interval of time 
t = 7.0 to 8.5. 

The flame was moved five sub steps (At/Atcb = 5 )  between each change of the 
vortex field. 
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